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ABSTRACT

Recent literature has suggested that haplotype inference through close relatives, especially from nuclear
families, can be an alternative strategy in determining linkage phase and estimating haplotype frequencies.
In the case of no possibility to obtain genotypes for parents, and only full-sib information being used, a new
approach is suggested to infer phase and to reconstruct haplotypes. We present a maximum-likelihood
method via an expectation-maximization algorithm, called FSHAP, using only full-sib information when
parent information is not available. FSHAP can deal with families with an arbitrary number of children, and
missing parents or missing genotypes can be handled as well. In a simulation study we compare FSHAP with
another existing expectation-maximization (EM)-based approach (FAMHAP), the conditioning approach
implemented in FBATand GENEHUNTER, which is only pedigree based and assumes linkage equilibrium.
In most situations, FSHAP has the smallest discrepancy of haplotype frequency estimation and the low-
est error rate in haplotype reconstruction, only in some cases FAMHAP yields comparable results.
GENEHUNTER produces the largest discrepancy, and FBAT produces the highest error rate in offspring in
most situations. Among the methods compared, FSHAP has the highest accuracy in reconstructing the
diplotypes of the unavailable parents. Potential limitations of the method, e.g., in analyzing very large
haplotypes, are indicated and possible solutions are discussed.

WITH the discovery of single-nucleotide polymor-
phisms (SNPs) along the genome, genotyping of

large samples of biallelic multilocus genetic phenotypes
for fine mapping of complex traits has become stan-
dard practice. Both simulation and empirical studies
have demonstrated that statistical analysis based on
haplotypes often is more efficient than separate ana-
lyses of individual markers (Dawson et al. 2002). Con-
siderable research effort has been devoted to algorithms
that infer haplotype phase from genotype data.

There are a growing number of articles on haplo-
type inference for unrelated individuals (Clark 1990;
Excoffier and Slatkin 1995; Stephens et al. 2001), but
more and more studies show that haplotype inference
through close relatives, especially from nuclear families,
can be an alternative strategy, as family information can
reduce phase ambiguity and improve the efficiency of
haplotype frequency estimates (Hodge et al. 1999;
Rohde and Fuerst 2001; Becker and Knapp 2002;
Schaid 2002). However, these methods consider mainly
those nuclear families with both parents and one child
(trios). When diseases with onset in adulthood or in old
age are studied, it may be impossible to obtain geno-
types for markers in the parents of the affected off-

spring, so that only full-sib information is available,
which also may be true for other reasons. Obviously, it is
essential to develop efficient approaches to handle such
families.

The existing computational methods for haplotyping
fit into two categories: statistical methods and rule-
based methods. The rule-based approaches (Qian and
Beckman 2002; Li and Jiang 2003; Gao et al. 2004;
Baruch et al. 2006) are deterministic and fast and thus
can handle large pedigrees with dense markers. How-
ever, they normally do not provide numerical assess-
ments of the reliability of their results, and the utility of
rule-based approaches for nuclear families remains un-
known (Niu 2004). On the other hand, statistical ap-
proaches are flexible in tackling nuclear families (Rohde

and Fuerst 2001; Becker and Knapp 2002; Ding et al.
2006), although they are time-consuming and thus may
not be suitable for large pedigrees.

Maximum likelihood via the expectation-maximization
(EM) algorithm (Dempster et al. 1977) is a widely
used statistical approach for haplotype inference.
Excoffier and Slatkin (1995) were the first to propose
a maximum-likelihood-based approach for haplotype
frequency estimation for unrelated individuals. EM-
based approaches without assuming linkage equilibrium
among the loci were suggested for various types of
complete (Rohde and Fuerst 2001; Becker and Knapp

2002) or incomplete (Ding et al. 2006) nuclear family
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data. Their performance was shown to be superior to that
of the Lander–Green algorithm (Lander and Green

1987) implemented in GENEHUNTER (Kruglyak et al.
1996), which as well as other linkage analysis programs
assumes complete linkage equilibrium between the loci
(Becker and Knapp 2002; Ding et al. 2006).

Several methods have been suggested for haplotype
inference using sibship data (Becker and Knapp 2004;
Horvath et al. 2004; Liu et al. 2006), which have their
own strengths and weaknesses. In this article, we pro-
pose a new maximum-likelihood-based method for
haplotype reconstruction and estimation of haplotype
frequencies using full-sib families, which allows genetic
markers to be in linkage disequilibrium and assumes
that no recombination occurs between the markers.

In our study, we first introduce the general idea of the
new algorithm. Most of the technical details are pre-
sented in the appendix. We then report the outcome of
a simulation study showing that our approach results
in a higher accuracy of the estimation of population
haplotype frequencies and of reconstructed individual
haplotypes. In the discussion we provide arguments to
explain the better statistical properties of our procedure
compared with the established methods, and we discuss
options to overcome practical problems and limitations,
e.g., missing genotypes and the restriction in the num-
ber of loci processed simultaneously.

METHODS

Definitions: We consider a series of N closely linked
polymorphic loci. For N ¼ 3, a possible phase-unknown
genotype of individual i is Yi¼ (12; 34; 56). A haplotype
is defined as the ordered series of alleles on one of the
homologous chromosomes of one individual; e.g., for Yi,
a possible first haplotype is hi1 ¼ (1 4 5). The diplotype,
denoted as Gi, is then a particular combination of two
haplotypes; e.g., Gi¼ (hi1, hi2)¼ (1 4 5, 2 3 6) . Note that
for a given phase-unknown genotype, several diplotypes
are possible. So for one family f with nf full sibs, and
their phase-unknown genotype combination defined as
YPf, there are several possible diplotype combinations,
one of which can be represented as ðG1; G2; . . . ;Gnf

Þi ;
termed full-sib haplotype set (FSHS), where G1 denotes
the diplotype of sib 1 in the ith FSHS of family f.

The likelihood function: Following similar argu-
ments presented by Excoffier and Slatkin (1995),
for a sample of m families with only full sibs, the
likelihood function of the population haplotype fre-
quencies is defined as

Lðp1; p2; . . . ; pnÞ ¼
Ym
f ¼1

XSf

i¼1

Pf ðG1;G2; . . . ;Gnf Þi ; ð1Þ

where p1, p2; . . . ; pn are the population frequencies of
all haplotypes, and

Pn
i¼1 pi ¼ 1: ðG1;G2; . . . ;Gnf

Þi is the
ith FSHS for family f with nf full sibs, and Sf is the
number of possible FSHS in family f.

The EM algorithm: The EM algorithm iterates
between the expectation step and the maximization
step until the haplotype frequency estimations converge
(i.e., when the changes in haplotype frequency in con-
secutive iterations are less than some small value).

To implement the EM algorithm, a set of initial values
is required. It is assumed that given the phase-unknown
genotypes of family f, all the possible FSHSs for family
f have the same probability; i.e.,

P
ð0Þ
f ðG1; G2; . . . ;Gnf Þi ¼ 1=Sf : ð2Þ

These initial probabilities are used in the likelihood
function to calculate the initial likelihood value. Ac-
cording to Ceppellini et al.(1955) and Smith (1957),
the population haplotype frequencies can be calculated
in the first and in all subsequent iterations as

pðg11ÞðhtÞ ¼
Xm

f¼1

2nf

 !�1Xm

f ¼1

XSf

i¼1

ditP
ðg Þ
f ðG1; G2; . . . ;Gnf Þi ; ð3Þ

where 2nf is the total number of haplotypes being
considered in the ith FSHS ðG1; G2; . . . ;Gnf

Þi in family
f and dit is an indicator variable equal to the number
of times that haplotype t is present in the ith FSHS;
its possible values are 0, 1; . . . ; 2nf.

In the expectation step in the gth iteration, the
haplotype frequencies obtained in the previous itera-
tion are used to calculate the probability of each pos-
sible FSHS for family f as

P
ðg11Þ
f ðG1; G2; . . . ;Gnf Þi ¼

P
ðg Þ
f ðG1; G2; . . . ;Gnf ÞiPSf

k¼1 P
ðg Þ
f ðG1; G2; . . . ;Gnf Þk

;

ð4Þ

where

P
ðg Þ
f ðG1; G2; . . . ;Gnf Þi

¼
X7

j¼1

P
ðg Þ
f ððG1; G2; . . . ;Gnf Þi j fj ; mjÞP ðg Þð fj ; mjÞ

n o
:

ð5Þ

Here, we give only a brief explanation of Equation 5; for
details see the appendix. We first inferred the possible
parental combinations based on FSHS, and according
to the posterior parental information the probability of
FSHS is calculated. For one FSHS, there often will be
several possible parental combinations, so P ðg Þð fj ; mjÞ is
the probability of the jth parental combination given
the estimates of population haplotype frequencies
in the gth iteration, and P ðg Þf ððG1; G2; . . . ;Gnf

Þi j fj ; mjÞ
is the probability of FSHS conditional on the jth possible
parental combination.

Iterating between the E-step, using Equation 4 to
update probabilities of all FSHSs, and the M-step, using
Equation 3 to calculate all haplotype frequencies, the
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EM algorithm yields the maximum-likelihood estimates
of the population haplotype frequencies when an ade-
quate convergence criterion is reached.

In addition to the estimation of haplotype frequen-
cies, haplotype reconstruction is another objective of
haplotype inference. Using the probability of each
possible FSHS obtained in the expectation step Equa-
tion 4 after convergence, the conditional probabilities
of these FSHSs for a full-sib family with phase-unknown
genotype combination YPf can be calculated after the
conversion of all probabilities as

PfðG1; G2; . . . ;Gnf Þi j ðp1; p2; . . . ; pnÞ; YPfg

¼ PðG1; G2; . . . ;Gnf ÞiPSf
k¼1 PðG1; G2; . . . ;Gnf Þk

: ð6Þ

The one with the highest probability is the most likely
FSHS in full-sib family f, and subsequently the most
likely diplotype for each member in this family can be
obtained. On the other hand, there should be several
possible parental combinations for this most likely FSHS,
where a probability can be assigned to each possible pa-
rental combination (see the appendix). The one with
the highest probability will be regarded as the most
likely parental combination, and diplotypes of parents
will be easily obtained.

SIMULATION STUDY

Simulated data: To evaluate our approach, we carried
out a series of simulation studies. We simulated haplo-
types using Schaffner’s simulation program (Schaffner

et al. 2005) based on a coalescent model. The parame-
ters used for the simulation were: chromosome segment
length, 1 Mb; mutation rate, 1.5 3 10�8; recombination
rate, 1 3 10�8; effective population size, 10,000; and
number of sampled chromosomes, 1000. From the sim-
ulated haplotypes, the diplotypes of related individuals
were produced as follows: we first combined two ran-
domly chosen haplotypes to be the diplotype of the
first parent and two other randomly chosen haplotypes
to form the diplotype of the second parent. With the
assumption of no recombination, the diplotype of their
offspring was generated by randomly picking one of
the two haplotypes of the father and the mother, re-
spectively. For full-sib families, the information on
both parents was omitted after generating the children.
Markers are thinned to obtain the required 1 SNP per
8-kb density that was used throughout this study. In the
different scenarios, haplotypes of 5, 10, or 20 SNPs were
considered, the number of full-sib families was varied
between 15 and 60, and the number of offspring in
each family was varied between 2 and 20, respectively.
For each scenario, 100 replicates were generated and
analyzed, and every data set was expected to be in
Hardy–Weinberg equilibrium.

Approaches to be compared: In our study, we com-
pared our approach FSHAP with the following three
approaches:

a. FAMHAP estimates haplotype frequencies from un-
related individuals or simple nuclear families with an
arbitrary number of children with the EM algorithm
(Becker and Knapp 2004). The frequencies are the
frequencies in the founders, i.e., those of the parents
of the nuclear families and/or the individuals (single-
person families). FAMHAP provides only the most
likely diplotypes of both parents. The diplotypes of
offspring must be inferred again on the basis of their
own genotype and parental diplotypes.

Sibships with two missing parents can be treated as
well, and these are regarded as nuclear families in which
parental genotype information is missing at all loci,
but frequencies are still estimated with respect to the
parental generation (Becker and Knapp 2004). How-
ever, the frequencies in the parental generation are
identical to those in the offspring generation due to
Hardy–Weinberg equilibrium.

b. FBAT was initially designed by Horvath et al.(2004)
for implementing a broad class of family-based
association tests. For multiple tightly linked markers,
the haplotypes are first reconstructed via a condi-
tioning approach and association testing is then ap-
plied (Horvath et al. 2004). Haplotype FBAT can
deal with nuclear families, sibships, etc., when using the
additional program HaploInfo (http://www.biostat.
harvard.edu/�fbat/haploinfo.htm). This analysis pro-
vides haplotype population frequencies and diplo-
types of both parents and offspring.

c. GENEHUNTER is a widely used software for linkage
analysis (Kruglyak et al. 1996), which makes full use
of the pedigree information. After convergence the
program provides information only on the most
likely diplotype and does not give its posterior
probability. Although very popular and technically
suited to handle sibship data, GENEHUNTER uses
pedigree information only assuming genotypes to be
in full linkage equilibrium.

These three approaches were compared with FSHAP,
which is specially designed for haplotype inference us-
ing families with only full sibs and can handle arbitrary
numbers of full sibs. The parameters were estimated with
the approaches described in methods and thus account
both for linkage disequilibrium (LD) and for pedigree
information.

FAMHAP, FBAT, and FSHAP allow genetic markers to
be in linkage disequilibrium and assume that no recom-
bination occurs between the markers in the generation
leading to the full-sib groups. Although the inappropri-
ateness of using GENEHUNTER to reconstruct haplo-
types from markers in LD has been identified (Schaid
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et al. 2002), it was used here as a lower-bound reference
for the performance of FAMHAP, FBAT, and FSHAP.

Criteria: The efficiencies of the different approaches
were evaluated with two sets of performance indexes.
The first set, including indexes IF and IH, is related to
the evaluation of the population haplotype frequency
estimation. IF measures the discrepancy between the
estimated and true simulated sample haplotype fre-
quencies and was defined by Stephens et al. (2001) as

IF ¼
1

2

Xn

i¼1

jpi

^
�pi j ; ð7Þ

where the pi

^
and pi denote, respectively, the estimated

and the true simulated frequency for the ith haplotype
in the sample. IF varies between 0 and 1. The more
accurate the estimation is, the closer IF will be to 0.

Identification rate IH examines whether all haplo-
types present in the sample are identified in the
estimated haplotypes. In a sample with N individuals,
the minimum frequency for every true haplotype must
be $ð2N Þ�1, which can be used as a lower threshold
value for determining the existence of a haplotype; i.e., a
haplotype is accepted to be detected only if its estimated
frequency is .ð2N Þ�1. On the basis of this, Excoffier

and Slatkin (1995) suggested the statistic

IH ¼
2ðktrue � kmissedÞ

ktrue 1 kfound
; ð8Þ

where ktrue is the number of true haplotypes in the
sample, kfound is the number of identified haplotypes
with frequency above the threshold value in the sample,
and kmissed is the number of true haplotypes not
identified in the sample. IH also varies between 0 and
1. When all true haplotypes are identified, it will be 1,
and when none of the true haplotypes are identified, it
will be 0.

There are two options for the definition of true
haplotype frequency. The first one is the relative
frequency of haplotype i in the entire (‘‘true’’) popula-
tion, and the second one is the relative frequency of
haplotype i in the sample (i.e., in the sibships). The
methods compared in our study all make use of the
same data. Accuracy of parameter estimation is a
combination of (i) sampling and (ii) estimation condi-
tional on the sample. Since we are interested only in the
differences between methods, only step ii is relevant;
therefore a comparison conditional on the drawn sam-
ples seems appropriate.

The second set of indexes, including error rate and IR, is
related to the evaluation of the haplotype reconstruction.

If the most likely diplotype of an individual is the same
as the simulated true genotype, this individual will be
considered as being correctly haplotyped. The error
rate is the proportion of not correctly haplotyped indi-
viduals in the population.

Although the phase-unknown genotypes of parents
are not available, they can be inferred according to the
information of offspring. However, the father and the
mother cannot be definitely assigned due to their un-
known genotypes; only the reconstructed parental diplo-
types are taken into account to be compared with true
parental diplotypes in the calculation of error rate in our
approach. For FAMHAP, FBAT, and GENEHUNTER,
the reconstructed diplotypes for father and mother
were assigned to the most similar true genotypes of the
parents, respectively. The following combinations were
compared: (i) reconstructed father–true father and re-
constructed mother–true mother and (ii) reconstructed
father–true mother and reconstructed mother–true
father. The more similar combination was accepted and
used as basis for calculation of error rate in parents.

Even if the most likely diplotype of an individual is the
correct one, the posterior probability of this diplotype
may be substantially smaller than one. The overall qual-
ity of the haplotype reconstruction procedure can be
evaluated with the average posterior probability of
correctly reconstructed haplotypes, which is denoted
as IR. Since GENEHUNTER does not provide the
posterior probability of the most likely diplotype, and
FAMHAP only provides that for parents, the statistic IR

can be given only by FSHAP and FBAT.
Where appropriate, contrasts of the means of simula-

tion results between different estimation methods were
tested with a conventional t-test using SAS 9.1 (SAS
Institute 2004).

Running time of the algorithms was measured in
seconds on an IBM server (SUSE Linux 9.2 and 3-GHz
Intel Xeon processor).

RESULTS

We simulated four scenarios with identical genotyp-
ing costs: 60 families with two sibs, 30 families with four
sibs, 20 families with six sibs, and 15 families with eight
sibs. All the approaches deal with the same data sets with
haplotypes of 10 SNPs. The results of our comparisons
with respect to the performance of FSHAP, FAMHAP,
FBAT, and GENEHUNTER from these scenarios are
shown in Figure 1. In most cases, our new method for
haplotype inference using sibship data (FSHAP) has the
smallest discrepancy and lowest error rate and the
highest identification rate. Only in some situations,
the performance of FSHAP is close to FAMHAP, e.g., the
discrepancy in the first scenario of 60 families with two
sibs and the identification rate in the third scenario of
20 families with six sibs. In the estimation of haplotype
frequencies, GENEHUNTER produces the largest dis-
crepancy and the lowest identification rate, and in the
haplotype reconstruction, FBAT produces the highest
error rate in offspring in most situations.

In the parental haplotype reconstruction using off-
spring’s information, as shown in Figure 1, FSHAP,
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FAMHAP, FBAT, and GENEHUNTER perform poorly
in the case of families with only two full sibs, where the
error rate in parents remains above 0.45. This perfor-
mance is not so helpful to further analysis. However,
their performance improves rapidly with the number
of offspring being increased; especially, the error rate in
parents from our approach (FSHAP) and FAMHAP de-
creases faster than that from FBATand GENEHUNTER.
For the calculation of error rate in parents generally our
approach performs better than the other three meth-
ods, whereas the performance of FBAT is very close to
that of GENEHUNTER.

As expected, the efficiency of all the approaches can
be improved by increasing the number of offspring in
each family (Figure 1), which provides more family
information to exclude more redundant FSHSs and par-
ental combinations. The only exception is that the dis-
crepancy of haplotype frequencies from FAMHAP does
not decrease as in other approaches but increases slightly.

This point is further illustrated by Table 1. For the
second scenario of 30 families with only four sibs each,

even when the genotyping cost is double after the
number of families is increased to 60, the performance
of FSHAP and FAMHAP is still lower than that in the
fourth scenario of 15 families with only eight sibs each.
On the other hand, it also can be seen from Table 1 that
the improvement of efficiency of FSHAP and FAMHAP
is very small by increasing only the number of families,
and the identification rate is not increased but de-
creased a little bit.

Our approach and FBAT can provide a posterior
probability for the most likely diplotype. As shown in
Table 2, observing more offspring in families is also
helpful to improve the reliability of inference for
parents and offspring. For only two full sibs, there are
a lot of possible parental combinations, which make
the reliability of inference for parents very low, but
for multiple sibs, more redundant parental combina-
tions are excluded and the posterior probability of the
most likely diplotype will be increased. Table 2 shows
that the reliability of FBAT is apparently higher than
that of FSHAP in most situations. This mainly is a con-

TABLE 1

Efficiency of an increasing number of families vs. efficiency of an increasing number of offspring
from FSHAP and FAMHAP (10 SNPs)

FSHAP FAMHAP

30 families
with 4 sibs

60 families
with 4 sibs

15 families
with 8 sibs

30 families
with 4 sibs

60 families
with 4 sibs

15 families
with 8 sibs

Discrepancy 0.0234 0.0181 0.0092 0.0420 0.0305 0.0495
Identification rate 0.9475 0.9462 0.9874 0.8864 0.8454 0.9832
Error rate in parents 0.2128 0.2111 0.0367 0.2575 0.2614 0.0667
Error rate in offspring 0.0352 0.0341 0.0100 0.0706 0.0688 0.0177

Figure 1.—Comparison
of haplotype frequency esti-
mation and haplotype re-
construction of FSHAP,
FAMHAP, FBAT, and GENE-
HUNTER from four scenar-
ios with identical genotyping
cost: 60 families with two
sibs (denoted as 60/2),
30 families with four sibs,
20 families with six sibs,
and 15 families with eight
sibs in 100 data sets; haplo-
types of 10 SNPs are simu-
lated.
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sequence of the higher error rate of FBAT compared
with FSHAP. FBAT identifies less haplotypes correctly,
but those correctly identified on average have a higher
posterior probability than the ones identified with
FSHAP.

Generally, the discrepancy and error rate for the EM-
based methods increase when more SNPs are included,
since in this case the number of possible haplotypes
increases exponentially while the average amount of
information for estimation from the same data set de-
creases. As shown in Table 3, the efficiencies of FSHAP,
FAMHAP, and FBAT all decrease when the number of
SNPs is increased from 10 to 20. However, the decrease
with FSHAP is very moderate compared to that with
FAMHAP and FBAT.

It is also indicated from Table 3 that the impact of the
number of SNPs on the running time for the three EM-
based approaches of FSHAP, FAMHAP, and FBAT is very
large compared to that for GENEHUNTER. In the case
of 10 SNP loci, FSHAP is the fastest one among these
four approaches, but the average running time in-
creases dramatically from 0.17 sec to 9.66 sec when the
number of SNPs is increased from 10 to 20. Compared
to FSHAP, FBAT becomes much slower, where the
average running time exponentially increases to 161
sec from 3.45 sec. However, a progressive-extension
technique was implemented in FAMHAP (Becker and
Knapp 2004), which makes FAMHAP very fast for the
large number of SNP loci. Similarly, the Lander–Green
algorithm (Lander and Green 1987) keeps the speed
of GENEHUNTER almost stable with the doubling of
the number of loci.

The running time is also affected by the number of
children in families since more redundant parental
combinations can be excluded to improve speed by
using multiple sibs for FSHAP, FAMHAP, and FBAT.
Therefore, the running time of these three approaches
is decreased when the number of children is increased
from two to six (Table 4). However, this advantage will
be counteracted by the enumeration of all haplotype
configurations of more children; e.g., the running time
of FAMHAP is suddenly increased as sib size is increased
to eight. It is also indicated from Table 4 that FSHAP per-
forms faster than FAMHAP, FBAT, and GENEHUNTER.
FAMHAP is the second fastest approach.

In the case of 10 and 20 SNPs, some families cannot be
handled by FAMHAP due to too many possible haplo-
types. Therefore FAMHAP with a progressive-extension
technique being implemented is used throughout our
study, and FAMHAP without a progressive-extension
technique is denoted as FAMHAP_nit. A small number
of SNPs (5) and varying numbers of children in families
(4–8 or 2–10, respectively) are assumed to compare the
performance of FSHAP, FAMHAP, FAMHAP_nit, and
FBAT. We simulated two scenarios: 60 families with 4–8
sibs and 60 families with 2–10 sibs, all data sets with
haplotypes of 5 SNPs.

As shown in Table 5, FSHAP performs significantly
better compared to the other approaches in most
situations. The values of discrepancy from FAMHAP
and FAMHAP_nit are not different, whereas the perfor-
mance of FAMHAP is significantly better than that of
FAMHAP_nit with respect to identification rate and
haplotype reconstruction.

TABLE 2

The reliability of haplotype reconstruction for parents and
offspring from FSHAP and FBAT (10 SNPs)

No. of
families

No. of
offspring

FSHAP FBAT

Parent Offspring Parent Offspring

60 2 0.6371 0.9385 0.7563 0.9862
30 4 0.8965 0.9632 0.9129 0.9924
20 6 0.9595 0.9726 0.9508 0.9926
15 8 0.9793 0.9818 0.9688 0.9956

TABLE 3

The impact of the number of SNPs on the efficiency of FSHAP, FAMHAP, FBAT, and GENEHUNTER
(30 families with four sibs each)

FSHAP FAMHAP FBAT GENEHUNTER

No. of SNPs 10 20 10 20 10 20 10 20

Discrepancy 0.0234 0.0552 0.0420 0.0649 0.0568 0.1207 0.1586 0.1598
Identification rate 0.9475 0.9133 0.8864 0.7832 0.8964 0.8126 0.8659 0.8234
Error rate in parents 0.2128 0.2403 0.2575 0.3346 0.2348 0.3112 0.2312 0.2447
Error rate in offspring 0.0352 0.0828 0.0706 0.2073 0.0818 0.2126 0.0660 0.1512
Running time (s) 0.1749 9.6677 0.4701 1.3001 3.4500 160.9800 1.3301 2.1198

TABLE 4

The impact of the number of offspring on the running
time (s) of FSHAP, FAMHAP, FBAT, and

GENEHUNTER (10 SNPs)

No. of
families

No. of
offspring FSHAP FAMHAP FBAT GENEHUNTER

60 2 0.6176 0.6901 14.7200 2.5799
30 4 0.1749 0.4701 3.4500 1.3301
20 6 0.1199 0.2300 2.2101 3.1700
15 8 0.0963 0.8001 1.8900 54.6101
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DISCUSSION

One limitation of the EM algorithm is that it cannot
handle a large number of loci due to the memory
constraint. So far, FSHAP can handle up to 30 loci.
Recently, some strategies were proposed to overcome
this problem. Clayton (1999) first implemented pro-
gressive-extension (PE) techniques in his program
SNPHAP. Becker and Knapp (2004) further used PE
in FAMHAP, which gives reliable approximations of the
maximum-likelihood estimates for up to 63 SNP loci.
However, the number of bits required for the type of
data prevents this technique from handling more loci
(Becker and Knapp 2004). The PE technique does not
guarantee that the true EM estimates for individual
haplotypes are obtained (Qin et al. 2002), which in the
case of FAMHAP is not critical since the main objective
of the program is to estimate haplotype frequencies
rather than to reconstruct individual haplotypes. How-
ever, the results of our study (Table 5) indicate that the
progressive-extension technique will not impair the per-
formance of FAMHAP in haplotype frequency estimation,
while it can make FAMHAP perform better in haplotype
reconstruction. A possible explanation is that despite the
good haplotype frequency estimates FAMHAP without
progressive-extension techniques might be unable to pin-
point which family has which haplotype (T. Becker, per-
sonal communication).

Another widely used strategy for a large number of
loci is the partition-ligation (PL) algorithm proposed by
Niu et al.(2002). PL was first implemented together with
Gibbs sampling to estimate haplotype phases for a large
number of SNPs, and Qin et al.(2002) further combined
it with the EM algorithm to handle large sets of loci. The
PL–EM of Qin et al.(2002) is currently implemented for
unrelated individuals only, but can also be integrated in
our approach.

Although both FAMHAP and FSHAP are EM-based
approaches, there are two crucial steps in FSHAP that
make it perform better than FAMHAP, both with respect
to computing speed and accuracy of haplotype inference:

i. In our approach, a collapse technique is used to
infer possible parental haplotype combinations. It
starts from the possible parental haplotype combina-
tions based on a single pair of full sibs and then goes
through all additional full sibs, excluding those
haplotype combinations not being compatible with
the extra children (see the appendix). In FAMHAP a
complete list of possible parental haplotype combi-
nations is set up first, which will be very large when
parental multilocus genotypes are missing. After-
ward, those diplotypes not compatible with the
children’s genotypes are excluded. This strategy is
much slower and more memory demanding than the
one implemented in FSHAP, especially when the
number of loci is large.

ii. In our approach, the probability of each parental
configuration is calculated according to different
mating designs, which will give different weight to
each parental haplotype combination. Further, a
multinominal distribution is used to calculate the
joint probability of a sibship’s diplotype given each
posterior parental combination, which makes effec-
tive use of family information (see the appendix). By
this the information on parents and sibships is
updated in each iteration simultaneously, which
makes the estimation of haplotype frequencies more
accurate and the inference of haplotype reconstruc-
tion in parents and offspring more reliable com-
pared to FAMHAP, which originally was developed
primarily for haplotype frequency estimation rather
than for individual haplotype reconstruction.

TABLE 5

Comparison of efficiency of FSHAP, FAMHAP, FAMHAP_nit, and FBAT in the case of families with
different numbers of children (five SNPs) from 100 data sets

FSHAP FAMHAP FAMHAP_nit FBAT

60 families with 4–8 children each (on average 5.90 children/family)
Discrepancy 0.0043 (0.0006)a 0.0209 (0.0009)b 0.0190 (0.0009)b 0.0223 (0.0011)b

Identification rate 0.9794 (0.0042)a 0.9136 (0.0084)b 0.8401 (0.0132)c 0.9707 (0.0046)a

Error rate in parents 0.1125 (0.0030)a 0.1311 (0.0094)b 0.2470 (0.0250)b 0.1326 (0.0043)c

Error rate in offspring 0.0080 (0.0011)a 0.0192 (0.0016)b 0.1355 (0.0190)c 0.0204 (0.0015)b

Running time (s) 0.4209 0.8001 0.9301 9.9700

60 families with 2–10 children each (on average 5.93 children/family)
Discrepancy 0.0035 (0.0005)a 0.0250 (0.0012)b,c 0.0233 (0.0012)b 0.0282 (0.0012)c

Identification rate 0.9829 (0.0039)a 0.9271 (0.0080)b 0.8539 (0.0138)c 0.9658 (0.0051)d

Error rate in parents 0.1528 (0.0030)a 0.1716 (0.0043)b 0.2608 (0.0245)c 0.2084 (0.0070)d

Error rate in offspring 0.0054 (0.0008)a 0.0186 (0.0020)b 0.1333 (0.0210)c 0.0354 (0.0016)d

Running time (s) 0.2142 6.4800 6.4900 2.9600

FAMHAP_nit: FAMHAP without the progressive-extension technique being implemented. Standard error is in parentheses.
a,b,c,d Means with different superscripts within one row differ significantly at the a , 0.01 significance level.
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Liu et al.(2006) proposed another EM-based approach
for haplotype inference from sibship data, which was not
included in the comparison in our study. Liu et al.(2006)
report that their approach performs slightly better than
FAMHAP and that the variability of discrepancy of their
performance is small with the sample size. However, only
sibships with two children were taken into account in
their study. The approach proposed by Liu et al.(2006) is
similar to our approach by considering different parental
mating designs; however, the calculation of posterior
parental combinations is different. On the other hand,
Liu et al.(2006) do not make effective use of the joint
information of full sibs given the parental configura-
tion; therefore we expect our approach to be more
efficient with increasing family sizes.

Our study proves that including nuclear family in-
formation will improve not only the correctness of
haplotype reconstruction but also the accuracy of hap-
lotype frequency estimates as discussed in other studies
(Rohde and Fuerst 2001; Becker and Knapp 2002;
Schaid 2002). Especially for our approach FSHAP the
parental information can also be inferred accurately
when the number of offspring is increased. It will be
especially helpful for research in multiparous species
like pigs, dogs, fish, and many lab animals, where it is
easy to collect families with multiple siblings.

Theoretically, our approach can deal with sibships of
arbitrary size. However, families with an excessively large
number of children cannot be handled due to the
limitation of computing memory. On the other hand,
increasing the number of children is not always helpful
to improve the efficiency of our approach. As shown
in Table 6, the improvement is very small when the
number of children is increased from 8 to 12 and 15,
and the performance of our approach is decreased
when the number of children is increased to 20.

As Figure 2 shows, it is difficult to have a functional
relationship between the running time and sib size,
because the composition of phase-unknown genotypes
of sibs plays a more important role than sib size. To illus-
trate this we give three scenarios: (i) families with all
four children having genotype (12; 12; 12; 12; 12), (ii)
families with four children having different genotypes

each, and (iii) families with eight children having
different genotypes each. The running time of our
approach in the first case is higher than that in the
second and third cases because the number of possible
parental combinations is much higher in the first case
than in the second and third cases, even though the sib
size in the first two cases is identical and doubled in the
third case.

Comparing the results obtained here to the ones
reported by Ding et al.(2006), it can be concluded that
with the same burden of genotyping complete nuclear
families are more informative than sibships. In their
simulation based on the same program (Schaffner et al.
2005), the error rate of complete-family EM proposed by
Rohde and Fuerst (2001) is 0.4% in the case of 30 trios
and 10 SNPs (Ding et al. 2006), which is less genotyping
cost and a much lower error rate than the 3.5% of
FSHAP in the case of 30 sibships with four sibs each and
10 SNPs.

In practical situations, incomplete data on some
individuals due to failure of typing for one (or more)
of the component loci is very common in every lab. Our
approach can easily handle such a situation. For an
individual with a missing locus, we first list all the

TABLE 6

The impact of the number of children on the efficiency of FSHAP (10 SNPs)

No. of
families

No. of
offspring Discrepancy

Identification
rate

Error rate
in parents

Error rate in
offspring

Running
time (s)

60 2 0.0316 0.9138 0.5131 0.0603 0.6176
30 4 0.0234 0.9475 0.2128 0.0352 0.1749
20 6 0.0182 0.9628 0.0825 0.0237 0.1199
15 8 0.0092 0.9874 0.0367 0.0100 0.0963
10 12 0.0077 0.9923 0.0175 0.0100 0.1368
8 15 0.0098 0.9880 0.0188 0.0152 0.2029
6 20 0.0113 0.9882 0.0692 0.0581 0.9470

Figure 2.—The impact of the number of children in fam-
ilies on the running time (s) of FSHAP from seven scenarios
with identical genotyping cost: 60 families with 2 sibs (de-
noted as 60/2), 30 families with 4 sibs, 20 families with 6 sibs,
15 families with 8 sibs, 10 families with 12 sibs, 8 families with
15 sibs, and 6 families with 20 sibs in 100 data sets; haplotypes
of 10 SNPs are simulated.
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possible genotypes at this missing locus, where the
information of other sibs of this individual can be used
to exclude some impossible genotypes. Thus this in-
dividual will have several possible phase-unknown gen-
otypes. When inferring this individual’s diplotype, each
of her (his) phase-unknown genotypes has a corre-
sponding most likely diplotype with a conditional prob-
ability, so the one with the highest probability among
these most likely diplotypes is considered as the final
diplotype, and its corresponding phase-unknown geno-
type is the final multilocus genotype.

As in other family-based haplotype reconstruction
methods, it also is assumed that within a nuclear family
recombination does not occur in the considered chro-
mosome segments (Hodge et al. 1999). When recom-
bination events do occur among loci, it will make it
complex to infer the parental combinations on the basis
of the information of sibs. However, for tightly linked
loci, recombination is an unlikely event. Moreover, re-
cent studies (Patil et al. 2001; Gabriel et al. 2002) have
shown that the human genome can be partitioned into
large blocks with high LD and relatively low recom-
bination, separated by short regions of low LD. There-
fore, if the markers within the same haplotype block are
analyzed together, it is reasonable to assume that there is
no recombination among these markers (Wang et al.
2002).

Although FSHAP was initially designed for families
with only full sibs, it can also deal with sibships with
parents. According to the principle of FSHAP, the avail-
able parent will help to exclude redundant parental com-
binations and to improve the efficiency of FSHAP.

Furthermore, our approach can also be used in mixed-
data structures, consisting, e.g., of complete nuclear
families (two parents and at least one child) (Rohde

and Fuerst 2001), incomplete nuclear families (one
parent and at least one child) (Ding et al. 2006), sibships
with an arbitrary number of children (this study), and
single individuals (Excoffier and Slatkin 1995). All
of these four methods are implemented via an EM
algorithm and are similar in the likelihood function.
Hence, they can be unified in one framework for mixed-
data structures, which will be done in a future study.

At the moment, FSHAP runs only under Linux, and it
is available on request from the authors.
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APPENDIX

Inferring parental combination using sibs: For one population, there are seven types of diplotype combinations as
shown in Table A1 for any two individuals: (1) both are identical homozygotes; (2) one is a homozygote and the other
is a heterozygote, with one common haplotype; (3) both are identical heterozygotes; (4) both are heterozygotes with
one common haplotype; (5) both are different homozygotes; (6) one is a homozygote and the other is a heterozygote,
without a common haplotype; and (7) both are heterozygotes without a common haplotype.

Calculation of joint probability of the children’s diplotypes using parental information: For one family with known
parental combination the probability of each possible diplotype of the children have can be obtained as shown in
Table A3, and the joint probability of n children in this family is multinominal,

PðG1; . . . ;Gn j f ; mÞ ¼ n!

y1! . . . yk !
p

y1

1 . . . p
yk

k ; ðA1Þ

where (G1; . . . ;Gn) is the set of diplotypes of all children in this family, k is the number of types of diplotypes among all
children in this family (its maximum value is 4 as shown in Table A3), yi (i ¼ 1, . . . , k) is the number of children with
diplotype i, and pi is the corresponding probabilities of diplotype i shown in Table A3.

For example, in the case of n ¼ 4, (G1; . . . ;GnÞ ¼ ðhaha ; haha ; hahb ; hbhbÞ; and the parental combination known as
(hahb 3 hahb), we can obtain the values of k, y1, y2, and y3 as

k ¼ 3
y1 ¼ 2
y2 ¼ 1
y3 ¼ 1

0
BB@

1
CCA:

Then according to Table A3 and Equation A1, the joint probability of these children is

4!

ð2!Þ3 ð1!Þ3 ð1!Þ
1

4

� �21

2

1

4
¼ 3

32
:

.

TABLE A1

Type and diplotype combinations for two individuals

Type of combination 1 2 3 4 5 6 7

Diplotype of individual 1 haha haha hahb hahb haha haha hahb

Diplotype of individual 2 haha hahb hahb hahc hbhb hbhc hchd

This system of types of diplotype combinations can also be used when analyzing families with only full sibs. In
our method, a collapse technique is used to calculate the probabilities of parental combinations. For two full
sibs, as shown in Table A2, their possible diplotype combinations can be listed first, and for each possible com-
bination, several possible parental combinations can be inferred, and the probability of each parental combi-
nation can be calculated given the population haplotype frequencies. For multiple sibs, those diplotype
combinations that are not compatible with the extra offspring are excluded.
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TABLE A2

Type and probability of parental combinations according to diplotypes of two sibs

Two sibs:
Parent

Diplotype combination Diplotype combinations Type Probability P(f, m)

(haha,haha) (haha 3 haha) 1 p4
a

(haha 3 hahk) 2 2p3
a

Xn

k¼1;k 6¼a

pk

(hahk 3 hahk) 3 4p2
a

Xn

k¼1;k 6¼a

p2
k

(hahk 3 hahl) 4 4p2
a

Xn

k¼1
k 6¼a

Xn

l¼1
l 6¼a;k

pkpl

(haha, hahb) (haha 3 hahb) 2 2p3
a pb

(hahb 3 hahb) 3 4ðpapbÞ2

(hahb 3 hahk) 4 4p2
a pb

Xn

k¼1;k 6¼a;b

pk

(hahb,hahb) (haha 3 hahb), (hbhb 3 hahb) 2 2p3
a pb 1 2pap3

b

(hahb 3 hahb) 3 4ðpapbÞ2

ðhahb 3 hahkÞ
ðhahb 3 hbhkÞ
ðhahk 3 hbhkÞ

4 4p2
a pb

Xn

k¼1;k 6¼a;b

pk 1 4pap2
b

Xn

k¼1;k 6¼a;b

pk

1 4papb

Xn

k¼1;k 6¼a;b

p2
k

(haha 3 hbhb) 5 ðpapbÞ2

(haha 3 hbhk), (hbhb 3 hahk) 6 2p2
a pb

Xn

k¼1
k 6¼a;b

pk 1 2pap2
b

Xn

k¼1
k 6¼a;b

pk

(hahk 3 hbhl), (hahl 3 hbhk) 7 8papb

Xn

k¼1
k 6¼a;b

Xn

l¼1
l 6¼a;b;k

pkpl

(hahb,hahc) (hahb 3 hahc) 4 4p2
a pbpc

(haha 3 hbhc) 6 2p2
a pbpc

(hahk 3 hbhc) 7 4papbpc

Xn

k¼1
k 6¼a;b;c

pk

(haha,hbhb) (hahb 3 hahb) 3 4ðpapbÞ2

(haha,hbhc) (hahb 3 hahc) 4 4p2
a pbpc

(hahb,hchd)
(hahd 3 hbhc), (hahc 3 hbhd) 7 8papbpcpd
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Calculation of the probability of the FSHS: For family f with nf sibs, there are several possible FSHSs, and for
each FSHS, there are also several possible parental combinations for each FSHS; then the probability of the ith FSHS
in family f can be calculated as

PðG1; G2; . . . ;Gnf Þi ¼
X7

j¼1

PððG1; G2; . . . ;Gnf Þi j fj ; mjÞPð fj ; mjÞ
� �

; ðA2Þ

where j is the type of parental combination shown in Table A2, and Pð fj ; mjÞ can be obtained by using the expression
listed in Table A2. PððG1; G2; . . . ;Gnf

Þi j fj ; mjÞ is the conditional probability of the ith FSHS given the parental
combination.

TABLE A3

Diplotype and its probability of offspring according to parental combination

Parent Offspring

Type Combination Diplotype Probability

1 haha 3 haha haha 1
2 haha 3 hahb haha 1/2

hahb 1/2
3 hahb 3 hahb haha 1/4

hahb 1/2
hbhb 1/4

4 hahb 3 hahc haha 1/4
hahc 1/4
hahb 1/4
hbhc 1/4

5 haha 3 hbhb hahb 1
6 haha 3 hbhc hahb 1/2

hahc 1/2
7 hahd 3 hbhc hahb 1/4

hahc 1/4
hbhc 1/4
hbhd 1/4
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